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ABSTRACT

The incorporation of distributed energy resources into existing distribution systems provides make voltage
and frequency regulation challenging for distribution system operators and in sufficient concentrations can
destabilize the power grid. Re-configuring our distribution systems as a system of connected microgrids is
one method for mitigating these instabilities. However, there is little economic reason for distribution
system operators to undertake this complex upgrade of their systems. By looking beyond voltage,
frequency, and power regulation for microgrids, new methods for controlling and operating microgrids can
provide new functionality such as load flattening that will benefit distribution systems operators. This
report details the initial research into new scalable coordination and control techniques that could be used
to add this new functionality.

1. INTRODUCTION

This document is a summary of research into Scalable Coordination and Control for Multiple Microgrids.
This work is being performed under the Oak Ridge National Laboratory (ORNL) Laboratory Directed
Research and Development (LDRD) program. The goal of this research is to develop new distributed
control techniques that will enable multiple microgrids to share resources between themselves to improve
functional performance of microgrids in grid tied mode and increase the time that an individual microgrid
can operate in island mode. Microgrids are usually designed as a stand-alone system. However, deploying
microgrids into distribution networks doesn’t make sense with the way that they are currently used. The
primary benefit of microgrids is their ability to operate in island mode where they are decoupled from the
distribution system. Islanding mode can improve the resilience of a distribution system during rare extreme
events. However, when used in a distribution system, the amount of time a microgrid would spend in island
mode is very small compared to grid tied operation. To make deployment of microgrids into the
distribution network viable, new control functionality needs to be created that will benefit the distribution
system operators in grid-tied mode. Fortunately, the distributed nature of microgrid generation and storage
means that there are more local sensing, actuation, and computation that can be used to deploy new
functionality. For example, with the inclusion of local storage or dispatchable generation, multiple
microgrids can be used to reduce variations in total distribution system load which distribution companies
can use to reduce the cost of electricity that is purchased from transmission companies.

The two main difficulties in designing coordination and control systems for multiple microgrids are local
stochastic generation and the immense number of devices that need to be coordinated. To address these
difficulties, techniques from stochastic control and distributed control will be used in the design of the
control system. Additionally, predictive models and optimization will be used for long time scale
coordination. In section 2., the needed dynamic models of various system components are developed. This
includes, power flow, DC to AC inverters, DC to DC converters, wind generation, and solar generation. In
section 3., the common definitions for the control system hierarchies used in literature are defined. Section
4. give details of the software implementation of the system models. Section 5. defines the theoretical
control framework that will be used for microgrid coordination and control. Finally, in section 6.,
mathematical definitions of the control objective functions are developed. These objective functions are
utilized to optimize the coordinated behavior of the microgrids.
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2. SYSTEM COMPONENT MODELS

Model Predictive Control, unlike traditional feedback uses an ‘implicit’ feedback loop instead of an
‘explicit’ feedback loop. It solved an open-loop optimization at each time step and applies that solution at
the same time step, then uses the physical measurements to recalculate the optimal open-loop solution for
the next time step. This has the advantage of working well for highly complex nonlinear systems with large
uncertainties and stochastic inputs that would be difficult to create stable robust controllers for using other
control design techniques that rely on linearity, Gaussian noise, and accurate knowledge of the system
dynamics. While MPC deals well with uncertainty, it’s deterministic foundation makes it inherently
inadequate with systematically dealing with uncertainties. The consequence of this is that it is hard to
guarantee the performance of MPC controllers. This inherent inadequacy of MPC controllers has led to the
development of stochastic model predictive controllers which can more accurately characterize the
uncertainties in the system. This means that accurate models of both the deterministic and stochastic
behavior of microgrid components is an essential part of developing a distributed stochastic model
predictive control system.

A microgrid is a discrete energy system consisting of distributed energy sources (including demand
management, storage, and generation) and loads capable of operating in parallel with, or independently
from, the main power grid (Definition by Department of Energy).It is usually made up of energy
harvesters such as photovoltaic panel (PV) or wind turbine (WT), energy storages like battery and their
corresponding power electronics converters. The energy harvesters and storages can be regarded as
sources and the power electronics converters can be regarded as interfaces.

Control of such a complex system is a challenging task mainly because of the following reasons Olivares
et al. [2014]:

• Modelling accuracy: Three-phase balanced conditions, primarily inductive transmission lines, and
constant-power loads are typically valid assumptions in a bulk power system, however, will not hold
in microgrids.

• Low inertia: Due to the lack of large rotating mass and decouple control of converters, microgrids
are usually exposed under low inertia condition thus will have severe frequency deviations under
contingency, especially in islanding operation.

• Uncertainty: Since power generation in microgrids highly depends on environment condition,
generation fluctuates a lot. This makes the power balance be a hard task, especially considering
varying load profile. Moreover, parameters and performance of energy harvesters will change due to
the environment and operating condition as well.

• Stability: Small signal instability will arise due to the improper settings of control gain. Meanwhile,
the presence of connected LC filters in parallel and series will lead to resonance.

Besides the stable and optimal operation, more properties and functionalities want to be realized like
plug-and-play, harmonics elimination and fluctuation smoothing. These require well-designed control
architecture.

Our objective is to design a distributed secondary control for microgrids to eliminate some drawbacks of
droop-based primary control and meanwhile enable properties like robustness against model uncertainty,
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plug-and-play and renewable fluctuation smoothing. The objective will be achieved through the following
subtasks:

(1) Comprehensive modelling of hybrid DC/AC distributed energy resources including harvesters,
storages and converters;

(2) Basic control functionality realization such as battery charging/discharging, maximum power point
tracking, P/Q and V/ f control of DC/AC converter;

(3) Review of state-of-the-art microgrids control schemes;

(4) Power sharing capacity among paralleled connected inverters via droop-based control in islanding
microgrids;

(5) Distributed secondary control design considering energy harvesters towards plug-and-play and
fluctuation smoothing.

2.1 Source Models

2.1.1 PV Model

irrI

Figure 1. Practical PV device.

Figure 2. PV cells interconnected in series and parallel Muljadi et al. [2013].
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A comprehensive model of PV panel is reviewed in Villalva et al. [2009]. The widely-used PV device
model is represented in Fig. 1. The terminal voltage-current relationship is given as:

I = Iirr − I0

[
exp

(
q(V + RsI)

akT

)
− 1

]
︸                           ︷︷                           ︸

Id

−
V + RsI

Rp
(1)

where the diode saturation current I0 is expressed by

I0 = I0,n

(Tn

T

)3
exp

[
qEg

ak

(
1

Tn
−

1
T

)]
(2)

and the light-generated current of the PV cell is expressed by

Iirr = (Iirr,n + KI(T − Tn))
G
Gn

(3)

The parameters are defined as:

Ns = 54 : Number of series-connected cells

Tn[Kelvin] : Nominal temperature

Gn[W/m2] : Nominal irradiation

Isc,n[A] : Nominal short-circuit current

Iirr,n[A] : Nominal light-generated current

Voc,n[V] : Nominal open-circuit voltage

I0,n × 10−8[A] : Nominal diode saturation current

KV [V/K] : Open-circuit voltage/temperature coeff.

KI[A/K] : Short-circuit current/temperature coeff.

Rp[Ω] : Parallel resistance

Rs[Ω] : Series resistance

a : Diode constant

Eg[eV] : Bandgap energy of semiconductor

q × 10−19[C] : Electron charge

k × 10−23[J/K] : Boltzmann constant

If the PV cells are connected in series and parallel to form a PV power station (also called solar park)as
shown in Fig. 2, the model is scaled as Muljadi et al. [2013]:

IA =NpIirr − NpI0

exp

q(VA +
Ns
Np

RsI)

NsakT

 − 1


−

VA +
Ns
Np

RsI
Ns
Np

Rp

(4)
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2.1.2 Battery Energy Storage System

The battery model proposed in Tremblay et al. [2007] and Tremblay and Dessaint [2009] has been widely
used. Fundamentally modelling the battery is to establish the function of open circuit voltage (OCV) in
terms of state-of-charge (SOC). By using different materials, batteries can have different properties as
shown in Fig. 3.

Figure 3. The comparison of properties of different batteries Fu [2013].

Ref. Tremblay and Dessaint [2009] proposes more accurate models to approximate the exponential area as
shown in Fig. 4. Based on different materials, four slightly different models are given to represent the four
types of batteries: Lead-Acid, Lithium-Ion (Li-Ion), Nickel-Cadmium (NiCd) and Nickel-Metal-Hydride
(NiMH). First define variables and parameters:

Figure 4. Typical discharge curve.
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Vbatt : Battery terminal voltage [V]

E0 : Battery constant voltage [V]

K : Polarisation constant [V/Ah] or polarisation resistance [Ω]

Q : Battery capacity [Ah]

it =

∫
idt : Actual battery charge [Ah]

A : Exponential zone amplitude [V]

B : Exponential zone time constant inverse [(Ah)−1]

R : Internal resistance [Ω]

i : Battery current [A]

i∗ : Filtered current [A]

Exp(t) : Exponential zone voltage [V]

u(t) : Charge u(t) = 1 or discharge u(t) = 0 mode

Then hysteresis phenomenon (except for Li-Ion battery) between the charge and the discharge can be
represented by a non-linear dynamic system as:

dExp(t)
dt

= B· |i(t)|· (−Exp(t) + A· u(t)) (5)

The mode for Lead-Acid is expressed by
Discharge:

Vbatt = E0 − R· i − K
Q

Q − it
(it + i∗) + Exp(t) (6)

Charge:

Vbatt = E0 − R· i − K
Q

it − 0.1Q
i∗ − K

Q
Q − it

it + Exp(t) (7)

The mode for Li-Ion is expressed by
Discharge:

Vbatt =E0 − R· i − K
Q

Q − it
(it + i∗) (8)

+ Ae−B·it (9)

Charge:

Vbatt =E0 − R· i − K
Q

it − 0.1Q
i∗ − K

Q
Q − it

it (10)

+ Ae−B·it (11)

The mode for NiMH and NiCd is expressed by
Discharge:

Vbatt = E0 − R· i − K
Q

Q − it
(it + i∗) + Exp(t) (12)
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Charge:

Vbatt = E0 − R· i − K
Q

|it| − 0.1Q
i∗ − K

Q
Q − it

it + Exp(t) (13)

The battery parameters are given in Fig. 5.

Figure 5. Battery parameters.

2.2 Model of Hybrid DC/AC Distributed Energy Resources

2.2.1 Averaged-Switch Converter Model

PV
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1ipvi

Battery

3R 3L

2 dc

2 dc
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(1 )

d u

d u



 

battu





2 2

2 2

or

(1 )

d i

d i



 

2i

dc,pvi

dc,batti

invi

dcu





dci

d dd i q qd i

, dcL d du d u

, dcL q qu d u

2 qL i

2 dL i

2R

2R

2L

2L

di

qi

dv





qv





batti

Boost DC/DC Converter

Bidirectional DC/DC Converter
Grid-tie DC/AC Converter

Figure 6. A hybird DC/AC DER in grid-tie mode.

The averaged-switch model is adequate to study the dynamic features of microgrid and thus employed in
this project. A very general structure of a converter is given in Figure 7. The main effort is to establish the
input-output relationships of the power electronic switch networks in terms of the duty cycle d(t). To
achieve this goal, the dynamic states in both LTI networks and switch networks are averaged in a duty
cycle.

The switch network of a boost converter is shown in Fig. 8 (a). The averaged mathematical relationship is
given as:

u1(t) = d(t)u2(t) (14)

i2(t) = d(t)i1(t) (15)
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DC

Power Electronic 

Switch Networks

Linear Time-Invariant Networks
Sources Loads

1( )u t





2 ( )u t





1( )i t 2( )i t

( )d t

Figure 7. General separate structure of a converter.

Similarly, the switch network of a buck converter is shown in Fig. 8 (b) and its corresponding relationship
is expressed as

u2(t) = d(t)u1(t) (16)

i1(t) = d(t)i2(t) (17)

1( )u t




2( )u t





1( )i t
2( )i t

( )d t

1( )u t




2( )u t





1( )i t
2( )i t

( )d t

(a) (b)

Figure 8. Switch network of a DC converter: (a) Boost type, (b) Buck type.

The topology of three-phase DC/AC converter with a LC filter is presented in Figure 9. The switch network
is highlighted in the mesh block. The three-phase voltage uL,abc is controlled to achieve current-controlled
mode (CCM). In Blasko and Kaura [1997] a pair of new variables dd and dq, which is the equivalent duty
cycle in dq frame, is introduced such that the relationship between dc side voltage udc and ac side voltage
in dq frame uL,d and uL,q can be established as follows:

uL,d(t) = dd(t)udc(t) (18)

uL,q(t) = dq(t)udc(t) (19)

iinv(t) = dd(t)iL,d(t) + dq(t)iL,q(t) (20)

Having derived the averaged-switch model, a hybrid DC/AC distributed energy resources (DER) model can
be built in equivalent circuit fashion by simply adding the inductors and capacitors as follows Liu et al.

9



,L abci
,O abci

dcu




,L abcu

,O abcu

Switch Network

invi

Figure 9. Switch network of a DC/AC converter.

[2011]:

Ci
dui

dt
=

∑
k

ik (21)

Li
dii
dt

= um − un (22)

2.2.2 Comprehensive Model and Basic Control of a Hybrid DC/AC DER

Here we illustrate a hybrid DC/AC DER consisting of a PV generator and battery storage system. The
comprehensive models represented by equivalent circuits is shown in Figure 6 and Figure 10, respectively.
The boost DC/DC converter connected to the PV panel is to achieve maximum power point tracking
(MPPT) functionality. The battery is connected to a bidirectional DC/DC converter to realize charging and
discharging control meanwhile stabilize the DC link voltage. The converter can run in grid-tie mode and
island mode with slightly different equivalent circuit models. In grid-tie mode, the terminal voltage of
converter is assumed to be fixed at grid voltage level, while in island mode it is determined by island
network power flow. The control of DC/AC converter then operates at P/Q mode and V/ f mode,
respectively.

In the following context, superscript ∗ denotes the reference value, and bold symbols denote command.

2.2.3 Control Boost DC/DC Converter - MPPT

The control of the boost DC/DC converter is driven by the MPPT algorithm. The inputs are measured PV
panel terminal voltage and current. The output is the duty cycle d1. The perturbation and observation
method is the most popular MPPT algorithm and employed in this model. The flow chart of the algorithm
can be found in Yafaoui et al. [2007].

2.2.4 Control of Bidirectional DC/DC Converter

The battery charging/discharging control is realized by controlling the bidirectional DC/DC converter. The
control loops can be designed to achieve different targets such as different charging algorithms Armstrong
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Figure 10. A hybird DC/AC DER in island mode.

et al. [2008], or stabilizing the DC link voltage Wang et al. [2012]. In this system, the latter one is
implemented. Under battery discharging situation, where ibatt > 0, the DC/DC converter functions as a
boost converter, looking from the battery side. When the battery is in the charging process, the converter is
working as a buck converter. The steady-state relationships of both converters are given in previous
subsections. The standard control loop is represented in Figure 11.
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 

i
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

Figure 11. Control of the bidirectional DC/DC converter.

2.2.5 Control of DC/AC Converter in Grid-tie and Island Modes

Depending on their operation in an AC microgrid, the controlled modes of power converters can be
classified into grid-feeding, grid-forming and grid-supporting modes Rocabert et al. [2012].

The grid-feeding control is mainly designed to deliver power to an energized grid, also known as P/Q
control. The converters under such control can be represented as an ideal current source connected to the
grid in parallel with high impedance. In this application, it is important for this current source to be
perfectly synchronized with the AC voltage at the connection point, in order to regulate accurately the
active and reactive power exchanged with the grid. The simplified scheme of the grid-feeding power
converter is depicted in Figure 12. The grid-forming control can be represented as an ideal AC voltage
source with a low-output impedance, setting the voltage amplitude E∗ and frequency ω∗ of the local grid by
using a proper control loop, as illustrated in Fig. 1(a).

The grid-supporting converters can be represented either as an ideal AC-controlled current source in
parallel with a shunt impedance, or as an ideal AC voltage source in series with a link impedance. Its
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Figure 12. Basic control of a three-phase grid-feeding power converter Rocabert et al. [2012].

Figure 13. Basic control of a three-phase grid-forming power converter Rocabert et al. [2012].
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objective is to deliver proper values of active and reactive power to contribute to the regulation of the grid
frequency and the voltage. The most widely used grid-supporting functionality is so-called inertia
emulation to enhance the inertia response in a grid with high penetration of renewable sources.

In the above control diagrams, ud and uq are the control commands set to PWM. To fit the control structure
into our averaged-switch model, a simple calculation is needed as follows:

dd =
ud

u∗dc
(23)

dq =
uq

u∗dc
(24)
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3. CONTROL HIERARCHY IN A MICROGRID

The previous sections have explained models and controls in a single DER point of view, which are the
basic context as provision for microgrid analysis and control design. In this section, we are going to review
the state-of-the-art microgrid control methods hierarchically and clarify the position of our targets.

Figure 14. Hierarchical control levels: primary control, secondary control, and tertiary control Oli-
vares et al. [2014].

Figure 15. A typical frequency response under primary and secondary control.

Hierarchically speaking, microgrid control can be divided into three levels: primary control, secondary
control and tertiary control as shown in Figure 14. Figure 15 has shown a typical frequency response of a
system under primary and secondary control, which clearly illustrates the one of responsibilities of primary
and secondary control, that is, frequency stabilization and frequency restoration, respectively.

3.1 Primary Control

Primary control, also known as local control or internal control, is the first level in the control hierarchy,
featuring the fastest response. This control is based exclusively on local measurements. When the
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microgrid is running at grid-tie mode, primary control modes can be either grid-feeding or grid-supporting.
When it comes to islanding mode, the primary control is responsible for stabilizing frequency and voltage
through proper power sharing schemes as shown in Figure 15. The power sharing schemes can be divided
into communication-based and droop characteristic-based schemes Han et al. [2016].

Communication-based control techniques can achieve excellent voltage regulation and proper power
sharing. Moreover, in contrast to droop controllers, the output voltage amplitude and frequency are
generally close to their ratings without using a secondary control. It can be realized in either concentrated,
master/slave or distributed fashion. However, these control strategies, which require communication lines
between the modules, result in increased cost of the system. Long distance communication lines will be
easier to get interfered, thus reducing system reliability and expandability.

The droop control can enable proper power sharing among converters without interunit communications. It
can avoid complexity and high costs, and improve redundancy and reliability requirements. Most
importantly, such a system is easier to expand because of the plug-and-play feature of the modules which
allows replacing one unit without stopping the whole system. Therefore, droop control is widely used in
industrial application. Droop control is implemented before the grid-forming control loop in Figure 13.
The well-known P/Q droop characteristics is expressed as:

ω∗ = ω0 − m(P0 − Pmeas) (25)

E∗ = E0 − n(Q0 − Qmeas) (26)

Different from dq voltage and current control in Figure 13, another amplitude and phase control is
proposed in Chandorkar et al. [1993] and illustrated in Figure 16 with modified commands as:

dd =
Uref × cosδp

u∗dc
(27)

dq =
Uref × sinδp

u∗dc
(28)
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Figure 16. An amplitude and phase control scheme for islanding converter.

However, droop characteristic presents several drawbacks as follows:

(1) Frequency and voltage deviations

(2) Unsuitability for nonlinear loads due to harmonics and ignoring load dynamics

(3) Inability to provide accurate power sharing among DER units due to output impedance uncertainties

(4) Fluctuant and changeable output power of DERs
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To overcome these drawbacks, several improved droop control methods have been developed. These
methods can be categorised into four groups: 1) conventional and variants of droop control; 2) virtual
structure-based methods; 3) construct and compensate-based methods; and 4) hybrid
droop/signal-injection-based methods Han et al. [2016].

3.2 Secondary Control

Secondary control, also referred to as the microgrid energy management system (EMS), is the unit in
charge of ensuring power quality, mitigating voltage and frequency deviations (as shown in Figure 15), and
coordination of the individual DER units for their optimal operation by determining the set points for the
primary control Yazdanian and Mehrizi-Sani [2014]. Secondary control can also target to overcome some
drawbacks of droop-based primary control. Secondary control is the highest hierarchical level in a
microgrid, and operates on a slower time frame as compared to the primary control in order to (1) decouple
secondary control from primary control, (2) reduce the communication bandwidth by using sampled
measurements of the microgrid variables, and (3) allow enough time to perform complex calculations
Olivares et al. [2014].

Secondary control is usually realized as a centralized controller. However, extensive research has been
done on design secondary control in a distributed way such that the failure of a single unit will not produce
the fail down of the whole system. Under this type of control architecture, every DER has its own local
secondary control which will generate proper reference signals for the primary control level. Information
will be shared through communication network. A architecture comparison is illustrated in Figure 17.
Variety of control schemes have been successfully implemented in microgrid secondary control in a
distributed fashion such as distributed model predictive control (MPC), consensus-based techniques,
agent-based techniques and decomposition-based techniques Yazdanian and Mehrizi-Sani [2014].

3.3 Tertiary Control

The scope of tertiary control is not only in a single microgrid, but among several microgrids and the host
grid as shown in Figure 14. Tertiary control is responsible for coordinating the operation of multiple
microgrids interacting with one another in the system, and achieving economic optimization based on
energy prices and electricity market. Information is exchanged with the distribution system operator
(DSO). Thus tertiary control can be considered part of the host grid, and not the microgrid itself.
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(a)

(b)

Figure 17. Secondary control architecture: (a) Centralized control, (b) Distributed Control Shafiee
et al. [2014].
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4. IMPLEMENTATION

Based on the previous models that we have derived, a purely mathematical model of a hybrid DC/AC DER
with P/Q and V/ f control has been established in SIMULINK. Every branch detail can be checked. By
connecting with a load, this model become a basic DC/AC hybrid microgrid, which can operate under
grid-tie mode and islanding mode. The overall model is shown in Figure 18.

Figure 18. A simple hybrid DC/AC microgrid simulation model in SIMULINK.

The current flow represent the energy exchange as follows:

C
dudc

dt
= idc,pv + idc,batt − iinv (29)

Since we assume ideal switch, the power exchange in the inverter is expressed as:

udciinv =
3
2

(udid + uqiq) (30)

Figure 19. Power exchange in the system.

First let the system operate under grid-tie mode and assume two abrupt changes of solar irradiance: 1000
W/m2 to 800 W/m2 at 15 s and 800 W/m2 to 700 W/m2 at 30 s. The simulation results are plotted in the
following figures. The inverter power control command is set at 50 kW. The battery works at discharging
mode to compensate the power demand under different solar irradiance conditions. The DC link voltage
can be regulated within 0.3 s.

When the system operates at islanding condition, the same disturbance of solar irradiance is assumed.
Droop control is equipped to stabilize grid frequency and voltage. The simulation results are presented in
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Figure 20. DC link current flows.

Figure 21. Battery state of charge.

Figure 22. DC link voltage.
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Figure 23. Output current from the inverter.

Figure 24. Power exchange in the system.

Figure 25. DC link current flows.
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Figure 26. Battery state of charge.

Figure 27. DC link voltage.

Figure 28. Output voltage from the inverter.
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Figure 29. PLL frequency measurement.

the following figures. The power balance condition is similar to the previous case. The battery compensate
the demanded power to meet the load demand. The microgrid frequency and voltage is regulated by the
DER at desired value, i.e., 60 Hz and 220 V (Line to Line), respectively.

4.1 Power Balance Equation

In a microgrid, the balance between energy production and consumption must be met at each time. The
power balance equation and its derivatives without considering the line impedance can be denoted by

∆P =
∑
i∈NG

PGi +
∑
i∈NM

PMi +
∑
i∈NL

PLi +
∑
i∈NW

PWi +
∑
i∈NE

PEi (31)

∆Ṗ =
∑
i∈NG

ṖGi +
∑
i∈NM

ṖMi +
∑
i∈NL

ṖLi +
∑
i∈NW

ṖWi +
∑
i∈NE

ṖEi (32)

where ∆P is the unbalance power, PG is the absorbed power from the grid, PM stands for micro-turbine
power, PW is wind power, PE denotes the power supply from electrical storage and PL is the electrical load.
For the case that microgrid is connected to the main grid, PG compensates the unbalanced power mainly
via primary frequency control and by using a feedback of ∆P. In case of islanded microgrid, controllable
devices such as micro-turbines and storage systems can be used to compensate the mismatched power.
Dynamic model of gas micro-turbines consisting of mechanical, combustion, and electrical dynamics can
be found in Rowen [1983].

4.2 Load Dynamics

Accurate aggregated load dynamics can be modeled by the Uhlenbeck-Ornstein model as follows:

dPLi(t) = αL
(
P̄L − PL

)
dt + σLdW(t) (33)

where P̄L is a given load profile, αL is the tracking coefficient and σL denotes the variation coefficient. This
type of load model can stand for building equipment, electrical heaters and so forth. Uhlenbeck-Ornstein
processes have already been used in Weron et al. [2001] to model the deseasonalized data from the
California power market and performing out-of-sample forecasts.

23



4.3 Wind Turbine Dynamics

A wind turbine model can be described as a deterministic system with a stochastic input and can be written
as

dPW =
3
2
ρR2ν2Cp(η, θ)

dν
dt

+
1
2
ρR2ν3 dCp(η, θ)

dt
(34)

dCp(η, θ)
dt

=
dCp

dη
.
dη
dt

+
dCp

dθ
.
dθ
dt

(35)

where ρ is the density, R is the blade radios, ν denotes the stochastic wind speed and Cp refers to efficiency
function depending on wind direction (θ) and parameter η. The above wind turbine model is deterministic.
However, it is affected by stochastic wind speed ν which can be expressed by the following SDE Strelec
et al. [2012].

dν(t) = −
ν(t) − ν̄(t)

T
dt + kν̄

( 2
T

)0.5dW(t) (36)

where ν̄ is the hourly average of wind speed, the parameter T = Lν̄−1 where L is the turbulence length scale
and k is a constant factor. Higher order SDEs can also be used to obtain a better approximation of wind
speed.

4.4 Storage Dynamics

A simplified first-order storage model has been considered as follows

dPS

dt
= −ηPE − PLoss, 0 < η < 1 (37)

where Ps is the level of stored electrical energy, PE is the power absorbed/injected to the grid, PLoss

denotes a constant stored energy degradation in the sampling interval and η is the power exchange
efficiency which is different during charging and discharging mode Parisio et al. [2014].
These type of modelings are more appropriate for slow time scale dynamics (e.g., several minutes or hours)
which are more related to energy management systems (EMS) and 24-hours forecast. In this framework,
usually longterm response is weakly dependent on fast transient behaviors. As a result, fast dynamics of
inverters and other power electronic interfaces can be ignored in the modeling of microgrids.

4.5 Short-Time Scale Photovoltaic Model

Real-time predictions of solar irradiance and power are necessary for designing optimal controllers to
better improve the stability, reliability, and efficiency of microgrids. Previous attempts to model solar
irradiance can be classified into three general types: physical, frequency distribution and stochastic.
Stochastic models are more flexible having the ability to incorporate any non-deterministic influences such
as cloud movement and pollution levels into the model, and any non-standard features such as shading
specific to a particular location Craggs et al. [1999]. Thus, stochastic prediction is capable for capturing the
intrinsically non-deterministic (uncertain) nature of irradiance fluctuations. Understanding the sub-minute
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behavior of photovoltaic generation will be necessary to develop realistic predictive models of small
microgrids on the order of single houses to single buildings.

In this section, we propose to use a filter-based expectation maximization algorithm and Kalman filter for
real-time prediction of solar irradiance and power. This scheme results in a finite dimensional filter which
only uses the first and second order statistics. The algorithm is recursive allowing the irradiance and power
to be predicted online from received irradiance and power measurements. The algorithms are tested using
PV measurement irradiance and power data collected from PV cells located on the roof of the Distributed
Energy Communication & Control (DECC) Lab at ORNL. We propose to model the solar irradiance (or
power) by the following discrete-time stochastic linear time-variant state-space model

~xk+1 = Ak~xk + Bk~wk

~yk = Ck~xk + Dk~vk
(38)

where subscript k ∈ {0, 1, 2, . . .}, ~xk is a discrete-time state vector, ~yk is a discrete-time solar irradiance (or
power) measurement vector, and ~wk and ~vk are the discrete-time state noise and measurement noise
respectively. The noise processes ~wk and ~vk are assumed to be independent, zero mean, and unit variance
Gaussian processes. The unknown system parameters θk = {Ak, Bk,Ck,Dk} and the system states ~xk are
unknown and estimated through received signal measurement data, ~yn = {y1, y2, . . . , yn} . The parameters
are identified using a filter-based EM algorithm and the channel states are estimated using the Kalman
filter. The Kalman filter is introduced next.

4.5.1 Channel State Estimation: The Kalman Filter

The Kalman filter estimates the channel states ~xk for given system parameter θk and measurements ~yk. It is
described by the following equations Bishop and Welch [2001]

~̂xk|k = Ak−1~̂xk−1|k−1 + Pk|kCT
k−1D−2

k−1

(
~yk −Ck−1Ak−1~̂xk−1|k−1

)
(39)

~̂xk|k−1 = Ak−1~̂xk−1|k−1 (40)

~̂x0|0 = m0 (41)

where k = 0, 1, 2, . . . ,N, and Pk|k is given by

P
−1
k|k = P−1

k−1|k−1 + AT
k−1B−2

k−1Ak−1 (42)

P−1
k|k = CT

k−1D−2
k−1Ck−1 + B−2

k−1 − B−2
k−1Pk|kAT

k−1B−2
k−1Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + B2
k−1 (43)

where B2
k−1 = Bk−1BT

k−1 and D2
k−1 = Dk−1DT

k−1. The model parameters θk are estimated using the EM
algorithm which is introduced next.

4.5.2 Channel Parameter Estimation: The EM Algorithm

The filter-based EM algorithm uses a bank of Kalman filters to yield a maximum likelihood (ML)
parameter estimate of the Gaussian state space model Elliott and Krishnamurthy [1999]. The EM algorithm
is an iterative numerical algorithm for computing the ML estimate. Each iteration consists of two steps: the
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expectation and the maximization steps Wu [1983]. The filtered expectation step only use filters for the first
and second order statistics. The memory costs are modest and the filters are decoupled and hence easy to
implement in parallel on a multi-processor system Elliott and Krishnamurthy [1999]. The algorithm yields
parameter estimates with nondecreasing values of the likelihood function, and converges under mild
assumptions Wu [1983].

Let θk = {Ak, Bk,Ck,Dk} denote the system parameters in (38) and
{
Pθk : θk ∈ Θ

}
denotes a family of

probability measures induced by the system parameters θk. The EM algorithm computes the ML estimate
of the system parameters θk, given the data ~yk. The expectation step evaluates the conditional expectation
of the log-likelihood function given the complete data as

Λ(θk, θ̂k) = Eθ̂k

log
dPθk

dPθ̂k

|~yk

 (44)

where θ̂k denotes the estimated system parameters at time step k and E(·) is the expectation operator. The
maximization step finds

θ̂k+1 ∈ arg max
θk∈Θ

Λ
(
θk, θ̂k

)
(45)

The expectation and maximization steps are repeated until the sequence of model parameters converge to
the real parameters. The EM algorithm is described by Elliott and Krishnamurthy [1999]

Âk = E

 k∑
i=1

~xi~xT
i−1|Yk


E

 k∑
i=1

~xi~xT
i |Yk



−1

B̂2
k =

1
k

E

 k∑
i=1

((
~xi − Ai−1~xi−1

) (
~xi − Ai−1~xi−1

)T
)
|Yk


Ĉk = E

 k∑
i=1

~yi~xT
i |Yk


E

 k∑
i=1

~xi~xT
i |Yk



−1

D̂2
k =

1
k

E

 k∑
i=1

((
~yi −Ci−1~xi

) (
~yi −Ci−1~xi

)T
)
|Yk



(46)

The system (46) gives the EM parameter estimates at each iteration for the model (38). Furthermore, since
Λ(θk, θ̂k) is continuous in both θk and θ̂k, the EM algorithm converges to a stationary point in the likelihood
surface Elliott and Krishnamurthy [1999], Wu [1983]. The system parameters

{
Âk, B̂2

k , Ĉk, D̂2
k

}
can be

computed from the following conditional expectations Charalambous and Logothetis [2000]

L(1)
k = E

 k∑
i=1

~xT
i Q~xi|Yk


L(2)

k = E

 k∑
i=1

~xT
i−1Q~xi−1|Yk


L(3)

k = E

 k∑
i=1

[
~xT

i R~xi−1 + ~xT
i−1RT~xi

]
|Yk


L(4)

k = E

 k∑
i=1

[
~xT

i S~yi + ~yT
i S T~xi

]
|Yk



(47)
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where Q, R, and S are given by

Q =

eieT
j + e jeT

i

2

 (48)

R =

eieT
j

2

 (49)

S =

{ei

2

}
(50)

for all i, j ∈ {1, 2, . . . , 2n} in which ei is the unit vector in the Euclidean space; that is ei = 1 in the ith

position and ei = 0 elsewhere. For instance consider the case 2n = 2, then

E

 k∑
i=1

~xi~xT
i−1|Yk

 =

 L(3)
k (R11) L(3)

k (R12)
L(3)

k (R21) L(3)
k (R22)

 (51)

where

Ri j =

eieT
j

2
: i, j = 1, 2

 (52)

The other terms in (46) can be computed similarly from (47). The conditional expectations{
L(1)

k , L(2)
k , L(3)

k , L(4)
k

}
are estimated from the measurements Yk as described in Olama et al. [2009].

4.5.3 Simulation Results

In this section, the EM algorithm and the Kalman filter is used to predict the solar irradiance and power
from PV measurement irradiance and power data collected from PV cells located on the roof of the DECC
Lab at ORNL. The collected irradiance [W/m2] and power data [W] are sampled at one sample per second
(sampling rate is 1 Hz). Figure 30 shows one sample irradiance prediction performance for a 4th order
model. It can be noticed that the irradiance has been predicted with very high accuracy. It takes a few
iterations (about 5 iterations) for the prediction algorithm to converge. The prediction error is shown in
Figure 31.

Figure 32 shows the one sample power prediction performance for a 4th order model and its corresponding
error. Figure 33 shows the error between the actual power output and the predicted power output for the 4th

order model.
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Figure 30. Simulation Results illustrating the performance of the developed EM algorithm together
with the Kalman filter in predicting solar irradiance.

Figure 31. Simulation Error of the developed EM algorithm together with the Kalman filter in pre-
dicting solar irradiance.
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Figure 32. Simulation Results illustrating the performance of the developed EM algorithm together
with the Kalman filter in predicting solar power.

Figure 33. Simulation Error of the developed EM algorithm together with the Kalman filter in pre-
dicting solar power.
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5. CONTROL FRAMEWORK

Many different control frameworks have been developed to improve the dynamic response and uncertainty
tolerance of physical systems. Beginning in the first half of the 20th century with frequency domain
techniques and proportional-integral-derivative (PID) control to model stochastic control
techniques,control systems have evolved to solve increasingly difficult problems by including
nonlinearities in the system dynamics, robust behavior to uncertainties, multiple correlated inputs and
outputs, optimization, and stochastic variables.

Microgrids contain many stochastic generations systems, nonlinearities in the system dynamics, and the
need to optimize behavior over a wide range of time scales and circumstances. Microgrids and systems of
multiple microgrids will need to coordinate and control and coordinate many devices that are
geographically isolated with limited communication between devices. These requirements suggest the use
of distributed stochastic model predictive control as the framework for microgrid control. In this section the
basic frameworks for model predictive control (MPC), stochastic control, and distributed control will be
presented, then combined into a novel distributed stochastic model predictive control (dsMPC) framework.

5.1 Model Predictive Control

Model predictive control is commonly used to control large complex industrial systems with slow
dynamics such as chemical process systems. Model Predictive Control is a discrete time control system
that is designed to optimize the system response over a finite time-horizon. Once the optimal path over the
time horizon is calculated, the optimal control action is implemented for the next time period. Then the
time horizon is shifted by one period and the process is repeated.

For linearized, discrete-time, state-space models of the system dynamics given by

~x[k + 1] = A~x[k] + B~u[k] (53)

~y[k] = C~x[k] (54)

where ~x ∈ Rn is the system state vector, ~u ∈ Rl is the command input vector, and ~y ∈ Rm is the measured
outputs of the system that will be controlled. Based on the formulation given by Maciejowski [2002], the
objective of the control is to

i) Obtain the measurements ~y[k]

ii) Compute the optimal plant input ~u[k]

iii) Apply ~u[k] to the plant

A reference trajectory ~r[k + i|k] will be supplied by the user to describe the ideal behavior of the system.
The controller will attempt to force the system states ~x[k]→ ~r[k] through the control input ~u[k]. The future
states of the system cannot be measured, so they will be estimated using the discrete-time state-space
model. The estimated states are denoted by x̂[k + i|k]. Similarly, we will define an optimal control input
∆û[k + 1|k] where ∆û[k + 1|k] = û[k + 1] − ~u[k]. To add flexibility to the optimization and reduce
computational cost, the optimization is performed over finite time horizons given by i ∈ [Hw,Hp] and
j ∈ [0,Hu − 1] where Hw ∈ Z, Hp ∈ Z, and Hu ∈ Z. Finally, the cost function to be optimized is most
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commonly, the scalar valued quadratic cost function given by

V[k] =

Hp∑
i=Hw

Q[i]||x̂[k + i|k] − ~r[k + i|k]||2 +

Hu−1∑
j=0

R[ j]||∆û[k + 1|k]||2 (55)

This cost function seeks to minimize the error between the reference state r and the system state x while
also minimizing the size of the control effort used ∆û.

5.2 Stochastic Control

More recently, in the financial systems, the concept of stochastic control was developed. The fundamental
objectives are similar to model predictive control. Model predictive control is designed for deterministic
system dynamics, while stochastic control is designed to control systems with stochastic states and outputs.
This means that moving a system state from one value to another is no longer valid. Instead, the objective
is to maximize the expectation that the system state will be at the final desired value after a period of time.

Another important distinction is the the type of stochastic process. Some processes in a microgrid such as
solar generation or load are governed by stochastic differential equations, where the state evolution is a
purely stochastic process that is uncontrollable. Other stochastic systems include deterministic components
and include the ability to affect the system states through an external input with a stochastic noise
component.

In general, stochastic differential equations can be defined as follows:

d~x(t) = b(t, ~x(t))dt + σ(t, ~x(t))dW(t), ~x(0) = ~x0, t ∈ I (56)

where b : R+ ×Rn → Rn denotes the drift, σ : R+ ×Rn → Rn×m denotes the diffusion parameter, and W is a
Wiener process that is a non-stationary stochastic process.

This can be expressed as a discrete-time stochastic differential equation given by

~x[k + 1] − ~x[k] =

∫ k+1

k
µ(~x[s], s)ds +

∫ k+1

k
σ(~x[s], s)dWs (57)

where the first integral is an ordinary Lebesgue integral and the second integral is an Itô integral.

On the other hand a deterministic nonlinear differential equation with stochastic noise such as inverter
dynamics can be formulated as Kendrick [2002]

~x[k + 1] = f (~x[k], ~u[k], ~w[k]) (58)

~y[k] = h(~x[k],~v[k]) (59)

where ~w[k] and ~v[k] are generally zero mean Gaussian processes which are stationary processes. This
stationary characteristic means that the system states ~x can be estimated without the use of the expectation
operator.

When applied to power flow equations, the power balance will be a combination of both stochastic
differential equations and deterministic differential equations with stochastic noise terms.
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The typical quadratic cost function used with stochastic control is a variation on the cost function used with
standard linear MPC algorithms. This optimization has been applied to the deterministic form of the
nonlinear differential equations with Gaussian stochastic processes and the cost function is given by

V[k] = ~E

 Hp∑
i=Hw

(x̂[k + i] − ~r[k + i])T Q[i](x̂[k + i] − ~r[k + i]) +

Hu−1∑
j=0

R[ j]||∆û[k + 1]||2
 (60)

which is identical to (55) except for the expectation operator ~E[·].

Functionally, when applied to a microgrid or networked microgrids, this optimization will occur at the
device level and the reference signals ~r[k] will be supplied another optimization that will attempt to
optimize the overall behavior of the microgrids for different desired behaviors like load flattening or
maximizing efficiency. This separation of duties leads to a natural breakup of control functionality into
different scales and devices which is what distributed control is designed to accomplish.

5.3 Distributed Control

Distributed control came to prominence with the advent of multiagent systems. These systems need to
coordinate their behavior across time and spatial domains with limited communications and computation.
Coordination among agents lead to “complex optimization problems that need to be solved in a scalable
manner Ahmed et al. [2016]." An agreed upon definition of distributed control does not seem to exist.
Rather, control architectures are classified based on the amount of computation that occurs at the edges
(centralized, hierarchical, distributed, or some combination). Often the choice of architecture is highly
dependent on the specific system being controlled because of limitation on computation power and
communication. Distributed controls do not provide the performance of centralized controllers although
they can approach it, but distributed control “provide better scalability, naturally parallelized computation,
and resilience to communication loss and hardware failure Ahmed et al. [2016]." This scalability will be
critical for coordinating the power grid as more stochastic generation sources are added. As an example, if
only 1% of the american population added solar panels, batteries, and an inverter to their houses, this would
be more than 3 million new devices that need to be coordinated to maintain the stability of the power grid.

To understand distributed controls, we will develop a simplified mathematical formulation of a linear
coupled distributed control system given in van Schuppen [2011] known as a distributed Gaussian system
that consists of two nodes with the node 1 dynamics given by

~x1[k + 1] = A11~x1[k] + B1~u1[k] + B12~u12[k] (61)

~y1[k] = C1~x1[k] (62)

~u21[k] = C21~x1[k] (63)

and the node 2 dynamics given by

~x2[k + 1] = A22~x2[k] + B21~u21[k] + B2~u2[k] (64)

~y2[k] = C2~x2[k] (65)

~u12[k] = C12~x2[k] (66)
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In this formulation, the matrices B12 and B21 couple the input to the the state of the two nodes and the
matrices C12 and C21 couple the state of the outputs of the two nodes to each other. The overall system can
be converted to the general linear discrete state-space system given by (53). This is done using the
combined system vectors given by the state ~x = [~x1, ~x2]T , input ~u = [~u1, ~u2]T , and output ~y = [~y1, ~y2]T and
the basic linear discrete-time differential equation equations

~x[k + 1] = A~x[k] + B~u[k] (67)

~y[k] = C~x[k] (68)

(69)

By inspection, this yields the system matrices given by

A =

[
A11 B12C12

B21C21 A22

]
, B =

[
B1 0
0 B2

]
(70)

C =

[
C1
C2

]
(71)

Similarly, this can be expanded to an n-th order distributed system. The control objective is to design two
distributed controllers ~u1 = K1(~y1) and ~u2 = K2(~y2) such that the combined system states are stable (i.e.
limk→∞ ~x[k] = 0).

5.4 Distributed Stochastic Model Predictive Control

Distributed stochastic model predictive control can be considered an extension of both distributed control
and stochastic control. We will use a discrete linear Gaussian form of the system similar to the formulation
given in van Schuppen [2011]. While this system is two nodes, it can be easily extended to N nodes. Node
1 equations are given by

~x1[k + 1] = A11~x1[k] + B1~u1[k] + B12~u12[k] + M1~w[k] (72)

~y1[k] = C1~x1[k] + N1~v[k] (73)

~u21[k] = C21~x1[k] + N21~v[k] (74)

and the node 2 dynamics given by

~x2[k + 1] = A22~x2[k] + B21~u21[k] + B2~u2[k] + M2~w[k] (75)

~y2[k] = C2~x2[k] + N2~v[k] (76)

~u12[k] = C12~x2[k] + N12~v[k] (77)

The overall system can be converted to the general linear discrete state-space system given by (53). This is
done using the combined system vectors given by the state ~x = [~x1, ~x2]T , input ~u = [~u1, ~u2]T , output
~y = [~y1, ~y2]T , noise vector ~ζ = [~w,~v]T , and the basic linear discrete-time differential equation equations

~x[k + 1] = A~x[k] + B~u[k] + M~ζ[k] (78)

~y[k] = C~x[k] + N~ζ[k] (79)

(80)
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By inspection, this yields the system matrices given by

A =

[
A11 B12C12

B21C21 A22

]
, B =

[
B1 0
0 B2

]
, M =

[
M1 N12
N21 M2

]
(81)

C =

[
C1
C2

]
, N =

[
N1
N2

]
(82)
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6. CONTROL OBJECTIVE FUNCTIONS

Control requirements for individual microgrids generally fall into two time-scale categories. When
analyzing microgrid performance locally, short time-scale objectives revolve around frequency and voltage
regulation. When operating in grid-connected mode, voltage regulation is performed at the point of
common connection (PCC) by the power grid because of the large inertia existing in the grid compared to
the loads and generation sources locally. Currently, when a microgrid operates in island mode, both
frequency and voltage regulation (primary and secondary control) are performed by individual localized
microgrid controllers or a centralized controller. Voltage and frequency regulation take place at fast time
scales that need to operate at sub-cycle speeds (i.e. much faster than 60 Hz). In these instances, the control
actions need to stabilize operation on sub-second time scales.

The tertiary control functions currently provided by centralized microgrid controllers happen at much
slower time scales on the order of minutes to days. These control functions are concerned with resource
planning tasks such as storing enough energy in a battery system to maintain microgrid power for the
duration of a storm or smoothing the load seen at the PCC during a 24 hour period. Most work on
microgrid control has focused on short time-scale device control and more recently single microgrid
planning and device coordination. Far less work has focused on coordination and control of multiple
microgrids through tertiary control.

For distribution companies, microgrids are a bit of an enigma when it comes to incorporating them into
their distribution architecture. Utilities see microgrids as useful during storm events to prevent power
outages because of their islanding capabilities. However, these extreme situations happen only a small
fraction of the time so currently in the view of distribution companies, microgrids have limited usefulness.
Microgrids though can create new functionalities for utilities during normal operation such as load
smoothing which can save them money because of the structure of price agreements with transmission
companies that penalize peak power usage by distribution companies.

Beyond the economic benefits to distribution companies and customers from increased reliability and
flattened load profiles, microgrids seem to be the only way to enable large concentrations of local
generation. Because of the stochastic nature of loads and some distributed generation sources such as solar,
regulating voltage and frequency becomes impossible if a high enough concentration of energy used by
consumers is created using uncontrollable (non-dispatchable) generation sources like solar. Currently the
existing transmission and distribution system in the United States cannot remain stable under these
circumstances. However, re-configuring our distribution system architecture as a group of interconnected
microgrids with integrated storage should allow high concentrations of distributed generation sources to be
deployed in the U.S. making our power grid more resilient to both natural and anthropogenic threats.

An important unsolved technical challenge is to coordinate and control energy generation, storage, and
consumption both at the microgrid level and at the distribution level as a collection of networked
microgrids. This section is intended to analyze and solve some of these coordination and control problems
at the multi-microgrid distribution system level. While the fast time-scale device controller for regulating
frequency, voltage, and power injection are important, these topics are sufficiently well researched to be
utilized at their current state of technological readiness. See sections 2. and 3. for more information. This
research if focused more on the overall coordination and control of multiple microgrids and creating
techniques with which they can interact more efficiently to provide new functionality for utility grids and
stability with high concentrations of non-dispatchable generation.
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First we will develop some objective functions for different types of desired behavior by multiple
microgrids that will be used to optimize their performance over a time period.

6.1 Load Flattening

As stated above, distribution companies would like to flatten their load profile over a 24-hour period. From
a hardware point of view, this means that a microgrid must have either dispatchable generation available
like a propane generator or a combination of non-dispatchable generation that has excess capacity beyond
the needs of the microgrid and storage. This is because of the fundamental law that power consumed PL(t)
needs to equal generation Pg(t)

PL(t) = Pg(t), ∀t (83)

When this equality is not valid, transients that can damage electrical equipment are introduced into the
system. When dealing with solar panels and other stochastic generation sources, the power created in a
time interval Tk ∈ [tk, tk+1] is given by

E[Pg(Tk)] =

∫ tk+1

tk

E[Pg(t)]
tk+1 − tk

(84)

Similarly, on the same time interval Tk, the power used is given by

E[PL(Tk)] =

∫ tk+1

tk

E[PL(t)
tk+1 − tk

(85)

The difference between these two quantities

∆Pr(Tk) = E[PL(Tk)] − E[Pg(Tk)] (86)

is the main cause of voltage and frequency fluctuations. Neither of these stochastic quantities are zero
mean. Furthermore, while the generation looks like a Gaussian distribution with time varying mean and
variance E[Pg(Tk)] ∈ N(µ(Tk), σ2(Tk)), locally a load distribution looks more like the sum of random
binary sequences of different magnitudes. Usually, loads are aggregated over hundreds or thousands of
nodes on an individual feeder and act as a similar time varying normal distribution to the generation, but
when viewed as a local load source, their random binary nature emerges. This is due to the fact that most
loads in a home are dual state (on/off) e.g. light bulbs, stoves, and HVAC systems. In a traditional
distribution network this statistical aggregation of loads means that centralized generation sources only
need to follow the average time-varying power consumption, however, when the generation is localized, it
needs to follow the different statistical distribution of the local loads. The response of current controller
designs to these highly localized non-Gaussian transients have not currently been analyzed theoretically.
Because of this, the maximum concentration of non-dispatchable generation for stable operation is still
unknown.

6.1.1 Grid Connected Operation

When the microgrid is connected to the main power distribution network the power received from the grid
PG(Tk) can balance the load and generation, but during islanded mode, the microgrid needs to have either
fast dispatchable generation sources PN(Tk), power storage PS (Tk), or a combination of both to maintain

38



the balance between load and generation. This leads to the first constraint that needs to be satisfied by the
controls system and optimization

E[PL(Tk)] = E[Pg(Tk)] + PG(Tk) + PN(Tk) + PS (Tk) (87)

Also, we will define E(Tk) = E[Pg(Tk)] − E[PL(Tk)] as the difference between local generation and load on
the time interval Tk. Obviously the magnitude of ||E(Tk)|| is highly dependent on the length of the time
interval ||Tk|| and the dynamics of the grid, dispatchable generation, and storage. In particularly, if the
dynamics of the grid, deterministic generation, and storage sources are such that they cannot quickly
respond to real variations in generation and load, the power grid will experience fluctuations in voltage and
frequency. This leads to the inequality constraint

max
t∈Tk

(
dPL(Tk)

dt
−

dPg(Tk)
dt

)
> max

(
dPG(Tk)

dt
,

dPN(Tk)
dt

,
dPS (Tk)

dt

)
(88)

which is an abuse of notation. Obviously the response speed of the grid, batteries, and dispatchable
generation sources are dependent on the physical devices used. This abuse of notation is meant to express
the need to think beyond the steady state or maximum capacity capabilities of the deterministic devices
used and additionally focus on the transient response of the devices. More subtly, this inequality constraint
is a function of the time interval Tk. This implies that the choice of Tk in the optimization is critical because
at small time intervals, sensor noise is the dominating dynamics in the system and at large values of Tk the
dynamics of the difference between generation and load are averaged and no longer capture the short term
variations in the error ∆Pr(Tk) which in turn will cause excessive voltage and frequency deviations.

Of the three generation sources PG, PN , and PS , only the grid power is uncontrollable at the local level.
This implies that a planning controller should have algorithms for deciding the values of PN and PS in such
a way that optimizes the long term stability of the system. This is decidedly easier when the microgrids are
connected to the distribution system because the grid can supply excess power to the microgrid. On the
other hand, when the grid is in island mode, the generation sources are resource limited and can only
supply as much power as is stored in the system when the island mode is activated.

This leads to a number of fundamental problems that need to be addressed by the control and coordination
system. First, to be resilient to natural and anthropogenic effects on the grid that cause the microgrid to be
operated in island mode, the microgrid needs to be designed with enough storage and generation to meet
the load requirements of the microgrid for a period of time greater than it will take to restore service that
we will denote as Tres. This is a highly localized value and depends on the resources of the utility and the
severity of the damage. The average restoration time is a metric that utilities are required to report, but
generally, this is averaged over all customers making it less than optimal for the design of microgrid
storage and local generation. On the other hand, their are many utilities such as the Chattanooga Electric
Power Board that have highly instrumented their distributions systems and have access to individual
household data on average times to fix any physical damage and restore power. Second, effective planning
requires accurate prediction algorithms for the expected power that can be generated over a 24-72 hour
period. This includes estimation of the likelihood of a severe weather event either through machine
learning or human input.

As stated before, there are some long term objectives that the coordination and control system should meet
subject to the constraints developed. When a microgrid is connected to the distribution system, one of the
primary objectives of the distribution companies is minimizing the overall peak power demand over a
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month

min
Tk=1 month

(
max
t∈Tk

E[PG(Tk)]
)

= min
(
max
∀t∈Tk

E[PL(t)] − E[Pg(t)] − PN(t) − PS (t)
)

(89)

which is clearly a stochastic optimization problem due the the two stochastic terms. For the optimization to
be feasible over this long time period, the estimation of the statistical distribution parameters of PL(t) and
Pg(t) needs to be accurate or the storage and local dispatchable generation capacities PS (t) and PN(t) need
to be able to provide local power for a significant portion of the optimization period. Since currently,
accurate load prediction capabilities lose accuracy after a few days and deploying such a large generation
and storage capacity would be excessively expensive, the suboptimal solution over a 24 hour period will be
given by

min
Tk=24 hr

(
max
t∈Tk

E[PG(Tk)]
)

= min
(
max
∀t∈Tk

E[PL(t)] − E[Pg(t)] − PN(t) − PS (t)
)

(90)

will be utilized. Taking advantage of the cyclical nature of power over a 24 hour period and the
mathematical equivalency

min
(

max
t∈[t1,t2]

E[P(t)]
)

= min
t∈[t1,t2]

E[(P(t) − E[P(t)]2)] (91)

the 24 hour objective function can be described and minimizing the variation in PG(t) over a 24 hour period
which is equivalent to

min
Tk=24 hr

E[(PG(Tk) − E[PG(Tk)])2] (92)

This implies that the storage and generation are absorbing all the fluctuation about the average power used
in a 24 hour period E[PL(t)], t ∈ [0, 24 hr]. Taking into account the power limitations of the storage
ES ∈ [0, ES ] and the local dispatchable generation

∫
t∈Tk

PG(t)dt < EN where · denotes the maximum energy
storage capacity of the storage and generation fuel supply respectively. Because the fuel supply for the
local generation PG is limited and has a long lead time for replacement (hours to days), this implies that the
local storage should provide the majority of load balancing to be most efficient, resilient, and responsive to
reducing variations in load. This leads to the complete optimization problem for minimizing the maximum
microgrid load as seen by the utility given by

min
PN (t),PS (t), ∀t∈Tk

E[(PG(Tk) − E[PG(Tk)])2] (93)

sub ject to (94)

0 ≤ Es ≤ ES (95)∫ Tk

0
PN(t)(d)t <= EN (96)

where Tk = 24 hr and PG(Tk) = E[PL(t)] − E[Pg(t)] − PN(t) − PS (t).

Another objective could be the minimization of the rate of charge and discharge in the battery which is
equivalent to maximizing the capacity of the battery.

min
PS (Tk+1) − PS (Tk)

k
(97)

s.t. (98)

E[PL(Tk)] = E[Pg(Tk)] + PN(Tk) + PS (Tk) (99)
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6.1.2 Island Mode

Similarly to grid connected operation, load flattening has uses when the microgrid is in island mode. Load
flattening in island mode doesn’t provide any financial incentives for the distribution company. However,
when the microgrid is in island mode, one of the main power sources are the battery storage systems.
Battery storage capacity is dependent upon the discharge rate of the batteries and there are additional power
losses when charging and discharging the batteries so flattening the load on the battery will improve the
total energy available and the efficiency of the microgrid. This is particularly important when in island
mode because energy resources are scarce and need to be extended as long as possible.

In island mode, the power balance equation becomes

E[PL(Tk)] = E[Pg(Tk)] + PN(Tk) + PS (Tk) (100)

Note that without other forms of dispatchable localized generation such as natural gas generators, there is
no possibility of meeting the load flattening objective because the storage needed to balance load and
generation PS (Tk)

PS (Tk) = E[PL(Tk)] − E[Pg(Tk)] (101)

is a function of two stochastic quantities which makes it a stochastic quantity that is uncontrollable.

This leads to the load flattening objective during island mode given by

min
Tk=24 hr

E[(PS (Tk) − E[PS (Tk)])2] (102)

However, other objectives than flattening the load that the batteries see during island mode may be
important to the operators. For example, minimizing the use of carbon creating generation sources like
PN(Tk) or maximizing the time that the generation sources can supply power to the microgrid in island
mode

max
n

k=n∑
k=0

E[PL(Tk)] − E[Pg(Tk)] + E[PN(Tk)] + E[PS (Tk)] (103)
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7. CONCLUSION

This report provided a detailed summary of the research accomplished into developing new distributed
stochastic control systems for coordination and control of multiple microgrids. Section 2. details the
dynamic models of individual system components that are used to understand their dynamic behavior and
combine into larger scale coupled system models of microgrids. Section 3. defines the three levels of the
control system hierarchy used in literature and examples of the current typical controller designs used in
microgrid controllers. Section 4. provides details on the software implementation of the component models
combined with primary and secondary controllers. Section 5. develops the fundamental mathematical
framework of the proposed distributed stochastic optimal control that will be used as the microgrid
controller. Section 6. develops some microgrid controller objective functions that optimize the microgrid
behavior during both grid-tied and island mode.

The next steps for this research are the combination of the controller framework and objectives into a
functional theoretical framework that can be applied to develop functional microgrid controllers that
provide new functionality to both consumers and distribution companies.
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microgridsâĂŤa novel approach. IEEE Transactions on power electronics, 29(2):1018–1031, 2014.

M. Strelec, K. Macek, and A. Abate. Modeling and simulation of a microgrid as a stochastic hybrid
system. In IEEE PES International Conference on Innovative Smart Grid Technologies. IEEE, 2012.

Olivier Tremblay and Louis-A Dessaint. Experimental validation of a battery dynamic model for ev
applications. World Electric Vehicle Journal, 3(1):1–10, 2009.

Olivier Tremblay, Louis-A Dessaint, and Abdel-Illah Dekkiche. A generic battery model for the dynamic
simulation of hybrid electric vehicles. In Vehicle power and propulsion conference, 2007. VPPC 2007.
IEEE, pages 284–289, 2007.

J. H. van Schuppen. Control of distributed stochastic systems - introduction, problems, and approaches. In
IAFC World Congress. IAFC, 2011.

Marcelo Gradella Villalva, Jonas Rafael Gazoli, et al. Comprehensive approach to modeling and
simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5):1198–1208, 2009.

Xiaoyu Wang, Meng Yue, and Eduard Muljadi. Modeling and control system design for an integrated solar
generation and energy storage system with a ride-through capability. In 2012 IEEE Energy Conversion
Congress and Exposition (ECCE), pages 3727–3734. IEEE, 2012.
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